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Localization of the electric-field distribution in graded core-shell metamaterials
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The local electric-field distribution has been investigated in a core-shell cylindrical metamaterial structure
under the illumination of a uniform incident optical field. The structure consists of a homogeneous dielectric
core, a shell of graded metal-dielectric metamaterial, embedded in a uniform matrix. In the quasistatic limit, the
permittivity of the metamaterial is given by the graded Drude model. The local electric potentials and hence the
electric fields have been derived exactly and analytically in terms of hypergeometric functions. Our results
showed that the peak of the electric field inside the cylindrical shell can be confined in a desired position by
varying the frequency of the optical field and the parameters of the graded profiles. Thus, by fabricating graded
metamaterials, it is possible to control electric-field distribution spatially. We offer an intuitive explanation for

the gradation-controlled electric-field distribution.
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I. INTRODUCTION

The topic of studying the propagation of electromagnetic
fields by metamaterials at the optical or microwave fre-
quency has received much attention [ 1-16]. Controlling elec-
tromagnetic field distributions by material structures and the
constituents can attain some unusual functional properties for
specific purposes. For example, Schurig ef al. [1] realized an
invisibility microwave cloak experimentally by controlling
the electromagnetic fields with a core-shell structure made of
metamaterial, based on the invariance of Maxwell’s equa-
tions under spatial coordinate transformation [2,3]. Similarly,
Rahm et al. [4] designed a square structure of an omnidirec-
tional electromagnetic field concentrator. Under the quasi-
static limit, a localized field resonant mechanism between a
metamaterial-coated cylinder and a polarizable dipole has
been disclosed in two-dimensional discrete systems by
Nicorovici et al. [5,6] and Milton and Nicorovici [7] (for
more information on this topic, see Refs. [8—16] and refer-
ences therein). In addition, a cylindrical structured metama-
terial was employed in controlling acoustic field in a liquid
by Farhat et al. [17]. Clearly, the above researches are related
to the impact of metamaterials on the field distributions.
Consequently, the distribution of local electric field can be
influenced by the external fields, material structures, and
properties. In this work, we shall investigate the control of
electric-field distribution by graded metamaterial whose
properties can vary gradually in space. Recently, graded
metamaterials were designed in terms of spectral representa-
tion [ 18] together with controlling the electric field in cylin-
drical geometry [19].

Motivated by the above work, the localization of electric-
field distribution will be discussed for the graded cylindrical
core-shell metamaterials. The extension of different graded
metamaterial models is related to a few theoretical methods
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for estimating the effective response and analytical solutions
of general graded materials [20,21]. With an applied optical
field, we consider a coated cylindrical structure, which con-
sists of a homogeneous dielectric core, a shell of graded
metamaterial having a complex permittivity given by the
graded Drude model [18,22] &,(r,w)=1-w(r)/ w(w+il),
where  is the angular frequency of the external optical elec-
tric field, w,(r) (I') is the spatially varying plasmon fre-
quency (relaxation rate), and r is the radial variable in cylin-
drical coordinates. For a power-law profile of plasmon
frequency w,(r), the potential and electric-field distributions
can be solved analytically in terms of the hypergeometric
functions. Our results show that the electric field can be con-
trolled by varying the model parameters. Such a control can
be achieved by the graded metamaterials at optical or micro-
wave frequencies.

In Sec II, we will establish the general formalism of a
graded cylindrical core-shell structure in the quasistatic limit
when the optical electric field is applied along the x direction
and obtain the equivalent permittivity of such structure. Fur-
thermore, the analytical potentials are obtained for a power-
law profile in a graded Drude model. In Sec. III, based on the
analytical solutions, we have numerically investigated how
the graded parameters can spatially control the electric-field
distribution and determine the position of the peak of the
field distribution within the two-dimensional core-shell
structure. A conclusion will be given in Sec. IV.

II. SOLUTIONS OF A GRADED CYLINDRICAL
CORE-SHELL STRUCTURE

We suppose the complex permittivity of an isotropic cy-
lindrical medium is a function of its spatial variables, i.e.
g,(r) depends on the radial variable r in cylindrical coordi-
nates (r,¢,z) and the subscripts a=c,s,h note the core,
shell, and isotropic host regions, respectively. Note that the
coated cylinder has a core of inner radius a and a shell of
outer radius b. In the quasistatic limit, the wavelength of
light is larger than the radius of the cylinder. Thus, the Max-
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well’s equations V-D=0 and VX E=0 give the following
field equation:

V'[sa(r)vq)a]=0’ (1)

where @, notes the potential of a-type medium and the local
electric field E,=-V®,,. For an infinitely long cylinder struc-
ture, Eq. (1) can be reduced to the following equation when
an external uniform electric field E, is applied along the x

direction:
] ”{ (7 ] @

1&{
o

With Eq. (2), the potentials of the homogeneous core and
host regions, i.e. constants €. and g, take the following
forms, respectively:

P (r.@) = ArE, cos(g),

r=a, (3)

®,(r,@) = (—r+b*Br)Eycos(¢), r>b. (4)

For the graded cylindrical shell, the potential ®; can be

expressed as @ (r,p)= 2 R,,(r)cos(me), where R,,(r) is the
m=0

radial function. Substituting the shell potential into Eq. (2),

we obtain the equation for the radial function R,,(r),

1&{8()% ()

2
] - ’%[ss(r)Rm(r)] —0, a<r=b.

(5)

For Eq. (5), there exist two solutions R} (r) and R, (r) that
are regular at origin r=0 and infinity r— %, respectively.
Then the general solution of the radial function is given by
R, (r)=A,R:(r)+B,R,(r). To satisfy the boundary condi-
tions of potentials in Egs. (3) and (4), the solution in graded
cylindrical shell region can be derived for m=1,

®(r,0) =[AR{(r) + BiR{(r)]E; cos(¢), a<r=b.

(6)

Considering the continuous boundary conditions of the po-
tential and normal electric displacement at the interfaces at
r=a and r=b, the nonzero coefficients A, B, A;, and B, of
Egs. (3), (4), and (6) are determined

A=[AR{(a) + B R{(a))a=R,(a)/a, (7)
_F(b)-1

TFb)+ 1 ®

Ay =2bTy(a)/[T5(a)T;(b) — T7(b)T5(a)], 9)

By == 20T3(a)[T3()T;(b) = T{(D)T(a)],
ab)

Ti(6) = Ri(b) + b=——"Ri(b),
Sh r

7i0) = Ri(0) + 622 L Ry,
g, Or
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T3(a) =Ri(a) -
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T)(a)=R{(a) -a—— PR

c

F(b) = bey(D) &Rl(b)’ (11)
R \(b) Ir
where Rl(a) :AIRT(a)'i'B]RI(a) and Rl(b) :AIRT(b)
+B;R;(b). Note that F(b) is the equivalent permittivity of the
graded cylindrical shell structure and formally dependent on
the detailed graded profiles and B is the equivalent dipole
factor of the system.

Next, we will consider a radially inhomogeneous permit-
tivity profile given by graded Drude model &,(r,w)=1
—wf,(r)/w(w+iF), where wﬁ(r):wf,(o)(l—hrk), and derive
the analytic solutions of the graded cylindrical shell region
so that a better control of local electric field is discussed. To
simplify the calculation and without loss of generality, we
further normalize the field frequencies w and the relaxation
rate I with ,(0) [or let w,(0)=1]. The normalized Drude
model is thus rewritten as

e(N=1-1-hMo(w+il)=c+dr, (12)

where c=(w’—1+iwl)/(0?*+iowl’) and d=h/(w*+iwl).
Here, note that the potential will be a complex function due
to the complex permittivity.

To obtain the analytical solution of the potential of the
graded cylindrical shell with gradient profile Eq. (12), we
introduce a transformation, namely, R,,(r)=rg(z), where z
=—dr*/c=—hr*/(w*+iwl - 1), into Eq. (5). In this case, Eq.
(5) is rewritten in the form

s zﬁzg( )

ﬁ}ﬁg_@

+kz| 25 + k-
Z[ 0z

1-2

+ {sz—m2— ISkZ }g(z) 0. (13)

In Eq. (13), let s>=m?, we have

2(1-2) j()+[1+2s/k 22(1 + s/k) ]~ g() ig(z):O,

(14)

where s=*m. Clearly, Eq. (14) is a hypergeometric equa-
tion [23]. Furthermore, for m=1, i.e. s= = 1, the solution of
Eq. (14) can be expressed by the hypergeometric function
F(a,B,7v,z), which is analytic in the whole complex plane
except at singular points z=0, 1, and « [23], where the pa-
rameters «, 3, and 7y are determined by the following equa-
tions: y=2s/k+1, a+B=2s/k+1, and aB=s/k. Note that we
can demonstrate that the hypergeometric functions
F(a+1,ﬂ+1,y+1,z) for s=1 and F(a 1,,8 15 7Y- I’Z) for s=-1
are linear independent and construct the general solution of

Eq. (14), where y. = +2/k+1, f. = E2all

—%\HW Thus, in graded cylindrical shell region, we

obtain two solutions R}(r) and R} (r), which are again regular

and -+
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FIG. 1. The spatial distributions of electric-field modulus |E|/E,
in the core-shell graded cylindrical system are displayed for differ-
ent reduced frequencies (a) w/w,(0)=0.6, (b) 0.7, and (c) 0.8, re-
spectively, where the parameters read as k=0.499, I’ /wp(0)=0,02,
h=0.7,a=0.4, b=1, £.=20, and g,=1 and the host region is shown
from r=1 to r=1.2 only. Note that the brighter region represents a
stronger field.

at origin point r=0 and infinity r— oo, respectively,

RT(’")ZrF(a+l’B+l’7+l’_hrk/p)9 (15)

Ry(r)=r"F(a_y.B1,y-1.— hr*'Ip), (16)

where p=w?+iwl - 1. Therefore, considering Eqs. (15) and
(16) and the coefficients of Egs. (3), (4), and (6), we have
analytically derived the potential solutions of graded cylin-
drical shell system with a graded Drude model. These solu-
tions can be used to analyze the local electric-field distribu-
tion.

III. NUMERICAL RESULTS

In order to investigate the local electric field controlled by
the model parameters, we first obtain the electric-field for-
mulas in the whole system from above analytical potentials.
With electric-field formula E,=-V®,, the moduli |E,| and
|E,| of the local electric fields in the host and shell regions
are derived, respectively,

|E,| = Eo[1 + (b/r)*B? + 2B(b/r)*cos(2¢)]V%,  (17)

|Ey| = Eo[(9R,(r)/9r)* cos?(@) + R3(r)r~? sin®(¢)]''2,
(18)

where R|(r)=AR{(r)+BR;(r). Note that the electric-field
modulus in an inclusion core region is a constant |E |=AE,.

With above formulas, the modulus |E| of the correspond-
ing local electric field is calculated and shown in Fig. 1,
where the spatial distributions of electric field in the coated
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FIG. 2. The distribution of electric-field modulus |E|/E, plotted
against the reduced frequency parameter w=w/w,(0) along the x
direction (i.e. ¢=0), where k=0.499, I'/,(0)=0.02, ©=0.9, a
=0.2, b=1, &.=20, and g,=1 and the host region is shown from
r=1to r=1.2 only.

cylindrical system (0=r=1.2) are dependent on the reduced
frequency w/w,(0) (external electric field E, is along x di-
rection and let Ey=1). It is clearly seen that the electric field
can be concentrated at a specific position in the shell regions
by varying the reduced frequency w/w,(0). The annular re-
gions of large intensity (brighter regions) surround the core
and are symmetrical about the y axis. Meanwhile, the
brighter region shrinks towards the core as the frequency
parameter w/,(0) increases. This indicates that controlling
and concentrating the electric field is possible by using the
core-shell graded metamaterials, where the similar result was
obtained for a solid cylindrical inclusion in Ref. [19]. To
further examine the electric-field distribution in Fig. 1, we
calculate the electric field along the x axis (i.e., ¢=0) for
different reduced frequency parameters w/w,(0) in Fig. 2. It
can be easily found that, when the frequency parameter in-
creases, the peak position of the electric-field modulus shifts
toward the core region. Similar to the case of the reduced
frequency parameter w/w),(0), the effects of the graded pa-
rameter k on the electric field are also shown in Fig. 3. This
can be understood from the fact that the graded Drude model
given by Eq. (12) has a decreasing plasmon resonant fre-
quency from r=a to r=b (0=a<b=1) with increasing the
parameters o/w,(0) and decreasing k. In addition, for a
given threshold value of electric-field modulus, the radial
region, whose corresponding electric-field value is larger
than the threshold value, shrinks when the reduced frequency
parameter increases. This intuitively explains why the bright-
ness and its corresponding region decrease with increasing
the reduced frequency w/w),(0) in Fig. 1.

To discuss the influence of the plasmon frequency param-
eter h on the local electric-field distribution, the numerical
calculation is taken for various parameters /4 ranging from
0.1 to 0.9 in Fig. 4. Our results show that there is a relatively
broad field distribution over the graded metal-shell space for
frequency parameter i ranging from 0.34 to 0.4 (similar to
the curve h=0.4 in Fig. 4) and a broad but weaken field
distribution for parameter 4 ranging from 0.1 to 0.3, such as
the curve £=0.5 in Fig. 4. This is possibly caused by the
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FIG. 3. The distribution of electric-field modulus |E|/E, plotted
against the parameter k of graded complex permittivity along the x
direction (i.e. ¢=0), where the other parameters are given in the
legend of Fig. 2 except for k, #=0.8, and w/®,(0)=0.6.

surface-plasmon resonance band of graded metamaterials
leading a broad field distribution [24]. For our example, the
frequency parameter 4 (ranging from 0.34 to 0.4) results in a
stronger field distribution over the whole graded shell region
comparing to other values of parameter 4. For the frequency
parameters £=0.7, 0.8, and 0.9, there clearly exists a peak of
local electric field as shown in Fig. 4. It implies that the
electric field can also be controlled by the parameter 4 and its
peak value of the electric-field distribution shifts toward the
core due to the Drude model with increasing parameter A.
In order to determine the peak’s spatial position of
electric-field distribution in cylindrical shell, we have inves-
tigated the frequency resonant condition w/w,(r)=1 of the
external optical-field frequency w and graded plasmon fre-
quency w,(r) of metamaterial shell. Because the plasmon
frequency w,(r) varies spatially, there exists a spatial region
of continuous plasmon resonance in the metamaterial shell.
If the external field frequency equals a plasmon frequency of
metamaterial shell in a spatial point r, resonance occurs and
induces a strong field in this spatial position. Thus, the local

40 |

30

20

Electric field modulus

Radius r

FIG. 4. The distribution of electric-field modulus |E|/E, plotted
against the parameter s of graded complex permittivity along the x
direction (i.e. ¢=0), where the other parameters are given in the
legend of Fig. 2 except for & and w/w,(0)=0.6.
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FIG. 5. The plot shows the peak’s position r determined by the
resonance condition w/w,(r)=1 for different frequency parameters
w=w/ wp(O) and graded parameters, where the graded plasmon fre-
quency is wi(r):wﬁ(O)(l —hrk). The exact peak’s position r is com-
pared favorably to the numerical peak’s position obtained in Figs.
2-4.

electric-field peak’s position can be exactly predicted by the
frequency resonant condition w/w,(r)=1. In Fig. 5, we have
given the exact peak’s position predicted by the formula
w/ wp(r)=1 and compared to the numerical results obtained
from Figs. 2—4. Excellent agreement is obtained and the
peak’s position can indeed be determined exactly. In addi-
tion, if w/w,(r)<1 [or w/w,(r)>1] in the whole metama-
terial shell region, it implies that the shell is the metalliclike
material (or dielectriclike material) and will induce a broad
distribution of local electric field (for the case of metalliclike
material, see Fig. 4 for 27=0.4 and 0.5) due to the salient
properties of graded metamaterials.

IV. CONCLUSIONS

In summary, the control of the electric field by graded
metamaterials has been investigated. With a graded Drude
model, the potentials and electric fields are analytically de-
rived by means of hypergeometric function for a graded
core-shell cylindrical structure. Our results show that the
electric-field distribution can be controlled by tuning the ex-
ternal field frequency, the plasmon frequency, and graded
parameters. One can further confine the field peak position in
the shell region by using the surface-plasmon resonant con-
dition w/w,(r)=1. The precise and flexible positioning of the
enhanced field may have many applications in optical design,
for example, in displaying and printing technologies. Fur-
thermore, it is also instructive to extend our method to the
three-dimensional spherical core-shell system for various
graded profiles.
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